93
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Hot Air Coating Technique as a Novel Method to Produce Microparticles

, , , &
Pages 913-923 | Published online: 14 Oct 2004
 

Abstract

In this work a new technology to produce microparticles, as well as the equipment suitable for its application, is described. This technique, called hot air coating (HAC), was developed to overcome the drawbacks of the conventional spray‐congealing technique and consists of a special venturimeter, deliberately designed to prevent any hindrance along the axial path through which the powder is conveyed. In HAC technology, the raw material is a solid, generally small granules, which is aspirated through the “Venturi effect” and accelerated in a flux of hot air to soften and then to melt the excipient, especially on the particle surface. The microparticles then solidify during falling in air at room temperature. Model formulations, containing acetaminophen or theophylline as drugs and glycerilmonostearate, stearic acid, or carnauba wax as coating waxes, were tested. The choice of the optimal operating parameters was found to be a function of the formulation and of the particle size of the starting material. A pressure of 3 atm and a temperature of 20–60°C above the melting point of the excipient were found generally to be the optimal parameters for the coating process. The morphology, the in vitro dissolution profile, and the possible drug/excipient interactions of formulations containing different percentages (30%, 50%, and 70% w/w) of acetaminophen were evaluated. The results show that the morphology and dissolution profiles of the microparticles were quite different from those of the starting material; in particular the best coating was achieved by microparticles lower than 500 µm. Therefore, the HAC process could be a viable alternative to the conventional spray‐congealing technique to produce microparticles with a high drug content.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.