157
Views
14
CrossRef citations to date
0
Altmetric
Research Article

In Vitro Evaluation of Betamethasone-Loaded Nanoparticles

&
Pages 19-24 | Published online: 26 Sep 2008
 

Abstract

The aim of the present work was to investigate the preparation of nanoparticles as a potential drug carrier in the treatment of various inflammatory diseases. A nanoprecipitation method was used to entrap betamethasone in a poly[ε-caprolactone] matrix. Process parameters such as the initial drug load, the surfactants (polyvinyl alcohol, PVA; sodium cholate, SC), and their concentration in the aqueous phase were analyzed for their influences on particle properties. Particle size changed with increasing surfactant concentrations (PVA: 250 to 400 nm; sodium cholate: 330 to 150 nm) due to changes in interface stability and viscosity of the aqueous phase. The zeta potential was around neutrality with PVA and between − 28 and − 42 mV with SC. Betamethasone encapsulation rates of about 75% and 90% slightly increased with higher surfactant concentration. Drug release profiles exhibited an initial burst release with both surfactants, PVA (8–18%) or SC (25–35%) followed by a sustained release delivering 15% to 40% of the entrapped drug within 48 hours. The present nanoparticulate formulations exhibit promising properties of a colloidal drug carrier for betamethasone. Although SC seems to be advantageous due to its biocompatibility, in terms of sustained drug release pattern, the use of PVA is favorable.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.