197
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Characterization of Gold Nanoparticle‐Functionalized Ordered Mesoporous Materials

, , &
Pages 729-744 | Received 01 Nov 2004, Accepted 17 Feb 2005, Published online: 06 Feb 2007
 

Abstract

We report the synthesis and characterization of three different ordered mesoporous materials, labeled MCM‐48, SBA‐155, and SBA‐16 type materials, which were functionalized with gold nanoparticles using three different strategies. The functionalization strategies can be categorized as (i) in situ growth of gold nanoparticles, (ii) template loading, and (iii) diffusion loading of prefabricated gold nanoparticles. Two different particle sizes were employed in the latter two strategies, 5 nm and 10 nm. For all mesoporous structures, functionalization strategies, and particle sizes attempted, the materials retained their long‐range order upon incorporation of nanoparticles. From the adsorption isotherms, incorporation of gold nanoparticles altered the pore structure of the mesoporous support of some of the SBA‐15 and SBA‐16 type materials, with the effect on incorporation on the pore structure being particle size dependent in most cases. The majority of gold nanoparticles were found to reside on the external surface of the materials regardless of substrate and functionalization strategy; however, for the in situ synthesis and the template loading strategies, a significant fraction of the particles was determined to reside within the pore system of the material. In situ growth resulted in the highest content of gold nanoparticles in the solid phase. The relative effectiveness in retaining gold nanoparticles in the solid phase for each functionalization strategy was determined to be, in descending order, in situ synthesis, template loading, and diffusion loading.

Acknowledgments

The authors sincerely thank Professor Vicente Rives and Ms. Patricia Benito at the Department of Inorganic Chemistry, Universidad de Salamanca, Spain, for collecting the diffuse‐reflectance UV‐vis spectra. We also thank the Research Council of Norway (NFR) for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.