645
Views
52
CrossRef citations to date
0
Altmetric
Research Article

Modeling Kinetic Data from In Vitro Drug Metabolism Enzyme Experiments

, Ph.D. & , M.S.
Pages 231-242 | Published online: 24 May 2004
 

Abstract

Modeling of in vitro enzyme kinetic data derived from drug metabolism experiments can greatly facilitate the drug development process because estimation of kinetic parameters can facilitate decision making regarding whether to continue development of a compound. From this information, predictions can be made regarding the “metabolic stability” of a compound and even the in vivo intrinsic clearance of the drug. Many drugs exhibit typical Michaelis–Menten‐type kinetics in vitro that result in a hyperbolic kinetic profile from which Km and Vm can be readily estimated. However, it is increasingly being recognized that many drug compounds exhibit “atypical” enzyme kinetics in vitro, requiring use of more complex kinetic models for data fitting and parameter estimation. These atypical kinetic profiles may include sigmoidal kinetics (autoactivation), biphasic kinetics, substrate inhibition kinetics, and heterotropic cooperativity (activation). This article briefly summarizes the types of equations necessary to adequately model both typical and atypical kinetic profiles in order to facilitate correct estimation of the relevant kinetic parameters.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.