411
Views
147
CrossRef citations to date
0
Altmetric
Research Article

Quinone Reductases Multitasking in the Metabolic World

Pages 639-654 | Published online: 25 Oct 2004
 

Abstract

The multiple functions of NAD(P)H:quinone oxidoreductase 1 (NQO1, DT‐diaphorase) in the cell are reviewed. NQO1 has long been viewed as a chemoprotective enzyme involved in cellular defense against the electrophilic and oxidizing metabolites of xenobiotic quinones. It also participates in reduction of endogenous quinones, such as vitamin E quinone and ubiquinone, generating antioxidant forms of these molecules. NQO1 has recently been shown to interact with superoxide and may be involved in scavenging superoxide within the cell. In addition, the possible role of NQO1 in p53 stabilization and consequently in contributing to p53‐dependent stress responses is summarized. Such protein multitasking is a good strategy in terms of cellular economy. NQO1 can also be exploited in the design of NQO1‐directed antitumor agents such as the new aziridinylbenzoquinone RH1 and Hsp90 inhibitors such as 17AAG. Polymorphisms in NQO1 which have profound influence on phenotype such as the NQO1*2 polymorphism may influence the chemoprotective actions of NQO1, and should be considered when NQO1‐directed antitumor quinones are used for therapy in patients.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.