Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 37, 2002 - Issue 1
189
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

PHOTOELECTROCATALYTIC OXIDATION OF RHODAMINE B IN AQUEOUS SOLUTION USING Ti/TiO2 MESH PHOTOELECTRODES

, , &
Pages 55-69 | Received 19 Apr 2001, Published online: 06 Feb 2007
 

Abstract

To further improve the photooxidation techniques for water and wastewater purification, a Ti/TiO2 mesh electrode, was successfully prepared by anodizing Ti mesh in 0.5 M H2SO4 solution. The structural and surface morphology of the Ti/TiO2 electrode was examined by Raman spectroscopy and scanning electronic microscopy (SEM) respectively. The examination results indicated that its structure and properties were affected by its growth rate in the anodization process, and anatase TiO2 was dominant in its composition. The photocatalytic (PC) oxidation and photoelectrocatalytic (PEC) oxidation of rhodamine B in aqueous solution using the Ti/TiO2 electrode were investigated and compared. The experimental results demonstrated that the PEC oxidation by applying an electrical bias between the Ti/TiO2 electrode and Pt electrode could significantly enhance the degradation rate of rhodamine B compared with the PC oxidation. It was found that the best performance of PEC oxidation was achieved by applying the electrical bias of 0.6 V. The mechanism of rhodamine B degradation in the PEC process was discussed by studying the changes of absorbance spectrum and proton nuclear magnetic resonance spectroscopy of rhodamine B during the PEC degradation. The experimental results illustrated that both de-ethylation and chromogen destruction of rhodamine B under UV-light irradiation in the PEC degradation took place simultaneously.

ACKNOWLEDGMENT

The work described in this paper was substantially supported by a grant from the Research Committee of The Hong Kong Polytechnic University (Project No: G-S714/97).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.