Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 37, 2002 - Issue 9
65
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

PHOTOCATALYTIC DESTRUCTION OF METHYL TERT-BUTYL ETHER IN THE GAS PHASE USING TITANIUM DIOXIDE

, &
Pages 1665-1675 | Received 27 Feb 2002, Published online: 18 Aug 2006
 

ABSTRACT

The efficiency of the photocatalytic destruction of methyl tert-butyl ether (MTBE) in the gas-phase using UV light and titanium dioxide was studied. TiO2 was coated on the inner side of the photoreactor. Specifically, the effect of residence time (0.17–2.22 min), MTBE concentration (500–5000 ppm), oxygen concentration (0–20,000 ppm) and water vapor on MTBE conversion was examined. Acetone and tert-butyl formate were detected in the photoreactor effluent. The formation of by-products from MTBE decomposition was determined with gas chromatography–mass spectrometry. The residence time affected dramatically the MTBE photo-oxidation as well as by-products existence and configuration. The increase in MTBE concentration at the reactor inlet and the addition of water vapor to the reactants resulted in decreased MTBE conversions. Increasing oxygen concentration up to 10,000 ppm enhanced the photocatalytic process but a further increase to 20,000 ppm had an adverse impact on MTBE decomposition. In all cases, the by-product formation profiles were extremely dependent on photocatalysis parameters studied.

Acknowledgments

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.