Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 38, 2003 - Issue 2
134
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Denitrifying Characteristics of the Multiple Stages Enhanced Biological Nutrient Removal Process with External Carbon Sources

, , &
Pages 339-352 | Received 28 Mar 2002, Published online: 24 Jun 2011
 

Abstract

This research investigated denitrifying activity of activated sludge with three external carbon sources (sodium acetate, methanol and glucose) via a series of batch experiments. Activated sludge used was cultivated in a multiple stages enhanced biological nutrient removal (EBNR) process that exhibited high removal efficiency of effective carbon, nitrogen, and phosphorus. Results showed type of external carbon source had a significant influence on specific nitrate utilization rate, nitrite accumulation, adaptive time of microorganisms, and nitrate removal efficiency. Sodium acetate addition resulted in high phosphate concentration in effluent; meanwhile methanol caused increasing turbidity and carbon breakthrough problem. When glucose was fed to be the external carbon source, accumulative nitrite concentration was higher than that with sodium acetate or methanol addition. When sodium acetate, methanol and glucose were used to be the electron donor, average dosages for nitrate elimination were 6.97, 5.85, and 5.65 mg-COD/mg-N, respectively. Because the final polyhydroxyalkanoates (PHAs) concentrations contained within the biomass were more than the original level and no phosphate re-release was observed, glycogen-accumulating organisms (GAOs) might exist in the multiple stages EBNR process and increased carbon dosage for further nitrate removal.

Acknowledgment

The authors would like to thank the National Science Council of the Republic of China for financially supporting this research under Contract No. NSC 89-2211-E-008-010.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.