Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 39, 2004 - Issue 4
414
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics of LCFA Inhibition on Acetoclastic Methanogenesis, Propionate Degradation and β-Oxidation

, &
Pages 1025-1037 | Published online: 06 Feb 2007
 

Abstract

Kinetics of long-chain fatty acids (LCFAs) inhibition on acetoclastic methanogenesis, propionate degradation and β-oxidation were studied with granular sludge under mesophilic batch conditions. Mathematical expressions used for reaction rates were as shown below:

The simulated results revealed that the methane production rates from acetate decreased with an increase in both concentration and the number of double bonds of LCFAs. The concentrations of oleate (C18:1), linoleate (C18:2), palmitate (C16:0), and stearate (C18:0) were 0.54 mM, 0.11 mM 1.62 mM, and 2.58 mM, respectively, at which the methane production rates from acetate dropped 10%, and 3.10 mM, 0.72 mM, 5.71 mM, and 5.37 mM, respectively, at which the rates dropped 50%. The inhibitory effects of LCFAs on propionate degradation showed a similar tendency with acetoclastic methanogenesis; however, were less severe. The concentrations of oleate, linoleate, palmitate, and stearate were 1.02 mM, 0.18 mM, 2.34 mM, and 1.92 mM, respectively, at which the propionate degradation rates dropped 10%, and 4.38 mM, 1.17 mM, 5.88 mM, and 5.18 mM, respectively, at which the rates dropped 50%. The observed maximum β-oxidation rates of oleate, linoleate, palmitate, and stearate were 0.21 mmol (g VSS)−1 d−1, 0.09 mmol (g VSS)−1 d−1, 0.12 mmol (g VSS)−1 d−1, and 0.08 mmol (g VSS)−1 d−1, respectively. The lag-phase times in β-oxidation were also dependent on LCFA concentrations. The concentrations of oleate, linoleate, palmitate, and stearate, at which the lag-phase times became 5 days, were 5.93 mM, 2.24 mM, 4.02 mM, and 2.81 mM, respectively.

Acknowledgments

This work was supported by grant No. M1-0203-00-0063 from the National Research Laboratory Program of the Korean Ministry of Science and Technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.