Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 40, 2005 - Issue 6-7
805
Views
109
CrossRef citations to date
0
Altmetric
Original Articles

Removal of Enteric Bacteria in Constructed Treatment Wetlands with Emergent Macrophytes: A Review

Pages 1355-1367 | Received 19 Nov 2003, Published online: 20 Aug 2010
 

Abstract

Domestic and municipal sewage contains various pathogenic or potentially pathogenic microorganisms which, depending on species concentration, pose a potential risk to human health and whose presence must therefore be reduced in the course of wastewater treatment. The removal of microbiological pollution is seldom a primary target for constructed treatment wetlands (CWs). However, wetlands are known to act as excellent biofilters through a complex of physical, chemical and biological factors which all participate in the reduction of the number of bacteria. Measurement of human pathogenic organisms in untreated and treated wastewater is expensive and technically challenging. Consequently, environmental engineers have sought indicator organisms that are (1) easy to monitor and (2) correlate with population of pathogenic organisms. The most frequently used indicators are total coliforms, fecal coliforms, fecal streptococci and Escherichia coli. The literature survey of 60 constructed wetlands with emergent vegetation around the world revealed that removal of total and fecal coliforms in constructed wetlands with emergent macrophytes is high, usually 95 to > 99% while removal of fecal streptococci is lower, usually 80–95%. Because bacterial removal efficiency is a function of inflow bacteria number, the high removal effects are achieved for untreated or mechanically pretreated wastewater. Therefore, the outflow numbers of bacteria are more important. For TC and FC the outflow concentrations are usually in the range of 102 to 105 CFU/ 100 ml while for FS the range is between 102 and 104 CFU/ 100 ml. Results from operating systems suggest that enteric microbe removal efficiency in CWs with emergent macrophytes is primarily influenced by hydraulic loading rate (HLR) and the resultant hydraulic residence time (HRT) and the presence of vegetation. Removal of enteric bacteria follows approximately a first-order relationship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.