Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 19, 2001 - Issue 2
441
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

GENOTOXIC PYRROLIZIDINE ALKALOIDS AND PYRROLIZIDINE ALKALOID N-OXIDES—MECHANISMS LEADING TO DNA ADDUCT FORMATION AND TUMORIGENICITY

, , , , , & show all
Pages 353-385 | Published online: 09 Jan 2008
 

Abstract

Plants that contain pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides are widely distributed in the world. These plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Although pyrrolizidine alkaloids have been shown to be genotoxic, including tumorigenic in experimental animals, the mechanisms of tumor formation have not been fully understood. Our recent studies on riddelliine, riddelline N-oxide, and dehydroretronecine (DHR) provided evidence suggesting that pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides induce tumors via a genotoxic mechanism, and that tumorigenicity is mediated by a set of eight DHR-derived DNA adducts. This mechanism may be general to other carcinogenic pyrrolizidine alkaloids and may also be responsible for the other genotoxicities of pyrrolizidine alkaloids, including mutagenicity and teratogenicity. It is hypothesized that these DHR-derived DNA adducts are potential biomarkers of pyrrolizidine alkaloid tumorigenicity.

Acknowledgments

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,114.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.