138
Views
62
CrossRef citations to date
0
Altmetric
Original

CHANGES IN CELLULAR PROTEINS DUE TO ENVIRONMENTAL NON-IONIZING RADIATION. I. HEAT-SHOCK PROTEINS

, &
Pages 141-152 | Published online: 30 Jun 2001
 

Abstract

This paper describes the effect of weak microwave fields on the amounts of heat-shock proteins in cell cultures at various temperatures.

The field was generated by signal simulation of the Global System for Mobile communications (GSM) of 960 Mhz, used in portable phones. Transformed human epithelial amnion (AMA) cells, growing on glass coverslips, were exposed in a transverse electromagnetic (TEM) cell to a microwave field, generating a specific absorption rate (SAR) of 2.1 mW.kg−1 in the cells. Exposure temperatures were 35, 37, and 40 ± 0.1°C, respectively, and the exposure time was 20 min.

The heat-shock proteins Hsp-70 and Hsp-27 were detected by immuno-fluorescence. Higher amounts of Hsp-70 were present in the cells exposed at 35 and 37°C than in the sham-exposed cells.

These effects can be considered to be athermal, since the field strength was much lower than the safety standard for absence of heat generation by microwave fields.

There was no significant response in the case of Hsp-27.

Notes

1 This research was partly funded by Novo Nordisk A/S. 151

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.