4
Views
4
CrossRef citations to date
0
Altmetric
Plaque Imaging

Quantification of Atherosclerosis with MRI and Image Processing in Spontaneously Hyperlipidemic Rabbits

, , , &
Pages 675-684 | Published online: 13 Jul 2009
 

Abstract

The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5‐T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima‐media cross‐sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima‐media area was 0.879 when computed individual‐wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment‐wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.