37
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

LINEAR SOLVATION ENERGY RELATIONSHIP STUDY OF RETENTION IN MICELLAR LIQUID CHROMATOGRAPHY ON A C18 COLUMN USING SODIUM DODECYL SULFATE AND CETYLTRIMETHYLAMMONIUM BROMIDE MOBILE PHASES WITH ALCOHOL MODIFIERS

, &
Pages 873-895 | Received 12 May 1999, Accepted 14 Sep 1999, Published online: 06 Feb 2007
 

Abstract

The fundamental chemical interactions governing the retention of 15 solutes in 40 micellar reversed-phase liquid chromatographic systems using sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), methanol, n-propanol, and n-butanol as mobile phase additives are studied using linear solvation energy relationships (LSERs). The influence of solute properties on retention in MLC and the trends in the coefficients as a function of SDS and CTAB concentrations are investigated. The ability of the LSERs to account for the chemical interactions underlying solute retention is shown.

A comparison of predicted and experimental retention factors suggests that LSER formalism may not completely model the energetics of retention in MLC, but that the discrepancies, although systematic, are generally small. Finally, the effects of the addition of 0.035 M SDS to 10% methanol/90% water mobile phases on solute retention are discussed.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation, the University of Minnesota, Boehringer Ingelheim Pharmaceuticals, Inc., DGICYT (Spain, reference PS90-0026), and the University of Alcalá de Henares.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.