125
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Hydrodynamics of PEG‐Phosphate Aqueous Two‐Phase Systems in a J‐Type Multilayer Countercurrent Chromatograph

, &
Pages 1311-1332 | Accepted 29 Dec 2004, Published online: 06 Feb 2007
 

Abstract

Recently, we have shown that countercurrent chromatography (CCC) is an effective method for the purification of plasmid DNA vaccines and gene therapy vectors.Citation1 As a basis for further work, this paper studies the hydrodynamics of various PEG‐Salt aqueous‐aqueous two‐phase systems in a Brunel J‐type countercurrent chromatograph. The degree of stationary phase retention, S f , once a hydrodynamic equilibrium is achieved has been studied as a function of mobile phase flow rate (0.5–2.0 mL·min−1), coil rotational speed (500–850 rpm), column volume (92.3 and 167.3 mL), choice of mobile phase (PEG or phosphate), and mobile phase pumping direction (Head→Tail or Tail→Head). Three different aqueous two‐phase systems (ATPS) were studied, which consisted of PEG 300‐K2HPO4, PEG 600‐ K2HPO4, and PEG 1000‐K2HPO4, having density and viscosity ratios between 1.15–1.13 and 0.27–0.12, respectively. High S f values in comparison to previous aqueous‐aqueous studies with CCC were obtained of up to 73.7%. These high S f values were obtained when the lower aqueous phase was pumped from Tail(periphery)→Head(centre), opposite to the direction normally recommended for most organic‐aqueous systems in J‐type CCC machines.Citation2 This is believed to be due to the high settling times and low density/high viscosity difference of aqueous‐aqueous systems compared to organic‐aqueous systems. DuCitation3 plots of the data showed the essential linear relationship between S f and √F, provided that S f >20%. Data obtained from Du plots for each phase system could also be used to satisfactorily predict S f as a function of column rotational speed. This work gives an insight into the behaviour of aqueous phase systems in J‐type CCC machines and is useful as a basis for process design and scale‐up.

Acknowledgments

The support of the Engineering and Physical Sciences Research Council (EPSRC) Life Science Interface and Innovative Manufacturing Research Centre initiatives for the IMRC in Bioprocessing is gratefully acknowledged. The IMRC is part of The Advanced Centre of Biochemical Engineering, UCL with collaboration from a range of academic partners and biopharmaceutical and biotechnology companies. IAM would like to thank Gulf Pharmaceutical Industries (Julphar, UAE) and the Ministry of Higher Education & Scientific Research (UAE) for financial support. Prof. Ian Sutherland (Brunel University) and Dr Andrew Booth (UCL) are thanked for an initial reading of the original manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.