127
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Electron Cryo‐Microscopy Reveals Mechanism of Action of Propranolol on Artificial Membranes

, &
Pages 61-76 | Published online: 08 May 2004
 

Abstract

The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective β‐blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time‐resolved electron cryo‐microscopy (cryo‐EM) under different experimental conditions. The liposome–drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin‐film vitrification. The time‐series cryo‐EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread‐like micelles, also called worm‐like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid–surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid‐to‐micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.

Acknowledgments

Very special thanks to Dr. Véronique Mallouh (ESBS, Strasbourg, France) for help with and Dr. Andres E. Leschziner (MCB Dept., UC Berkeley, USA) for critical reading of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.