182
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

OXIDATIVE POLYMERIZATION OF 2,6-DISUBSTITUTED PHENOLS CATALYZED BY IRON-SALEN COMPLEX

, , , &
Pages 719-730 | Received 30 Nov 1998, Published online: 18 Aug 2006
 

Abstract

Oxidative polymerization of 2,6-disubstituted phenols has been performed by using iron(III)-salen complex and hydrogen peroxide as catalyst and oxidizing agent, respectively. The oxidative reaction of 2,6-dimethylphenol produced the polymer along with a byproduct dimer of 3,5,3',5'-tetramethyl-4,4'-dipheno-quinone. The addition of pyridine suppressed the formation of the dimer to mainly give the polymer with molecular weight of more than 1×104 in high yields. From NMR analysis, the polymer was found to consist of exclusively 1,4-oxyphenylene unit. Effects of the solvent composition, added amount and type of amine, and catalyst amount have been systematically investigated. 2-Allyl-6-methylphenol and 2,6-diphenylphenol produced the corresponding polymer under the similar polymerizaconditions, whereas the formation of C-C coupling dimer was observed in using 2,6-diisopropylphenol and 2,6-dimethoxyphenol as monomer.

ACKNOWLEDGEMENTS

This work was partly supported by a Grant-in-Aid for Specially Promoted Research (No. 08102002) from the Ministry of Education, Science, and Culture, Japan, and by NEDO of the project on Technology for Novel High-Functional Materials in Industrial Science and Technology Frontier Program, AIST.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.