38
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

THERMAL DEGRADATION KINETICS OF THERMOTROPIC COPOLY (P-OXYBENZOATE-ETHYLENE TEREPHTHALATE-VANILLATE) BY A HIGH-RESOLUTION THERMOGRAVIMETRY

&
Pages 859-878 | Received 15 Oct 1998, Published online: 18 Aug 2006
 

Abstract

Thermotropic liquid crystalline terpolymers consisting of three units of p-oxybenzoate (B), ethylene terephthalate (E), and vanillate (V), were studied through a high-resolution thermogravimetry to ascertain their thermostability and kinetics parameters of thermal decomposition in nitrogen and air. Overall activation energy data of the major decomposition have been calculated through four calculating techniques. The thermal degradation occurs in three steps in nitrogen, but in four steps in air due to an additional thermo-oxidative step. The thermal degradation temperatures are higher than 436°C in nitrogen and 424°C in air and increase with increasing B-unit content at a fixed V-unit content of 5 mol%. The temperatures at the first maximum weight-loss rate are higher than 444°C in nitrogen and 431°C in air and increase slightly with an increase in B-unit content. The first, second, and third maximum weight-loss rates almost maintain at 10–11, 10–11, and 3.6–5.3%/min regardless of copolymer composition and testing atmosphere. The char yields at 500°C in both nitrogen and air are larger than 40 wt% and increases with increasing B-unit content. But the char yields at 800°C in nitrogen and air are quite different, i.e., 18–25 wt% in nitrogen and 0 wt% in air. The activation energy and Ln (pre-exponential factor) for the major decomposition are higher in nitrogen than in air and decrease slightly with an increase in B-unit content at a given V-unit content 5 mol%. There is no regular variation in the decomposition order with the variation of copolymer composition and testing atmosphere. It is found that the most V-unit-containing terpolymer exhibited the lowest degradation temperature, lowest activation energy, and lowest Ln (pre-exponential factor). The activation energy, decomposition order, and Ln (pre-exponential factor) of the thermal degradation for the terpolymers, are situated in the ranges of 121–248 kJ/mol, 1.5–2.8, 19–38 min−1, respectively. These results indicate that the terpolymers exhibit high thermostability. The isothermal decomposition kinetics of the terpolymer at 450°C have also been discussed and compared with the results obtained based non-isothermal high-resolution thermogravimetry.

ACKNOWLEDGMENTS

This project was supported by the National Natural Science Foundation of China and by the Phosphor Plan of Science Technology for Young Scientists of Shanghai City of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.