71
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A Modified Method for the Synthesis and Characterization of a Novel Surface-Enriched (with Active Site) Polymer-Supported Phase Transfer Catalyst Using Vinyltoluene as a Functionality and Its Catalytic Efficiency in Dichlorocarbene Addition to Olefines—A Kinetic Study

&
Pages 525-546 | Received 01 Aug 2002, Published online: 07 Feb 2007
 

Abstract

A modified method with respect to an earlier conventional procedure was successfully attempted and we now report the new procedure for the synthesis of surface-grafting technique by the delayed addition of inexpensive vinyltoluene (VT) functionality to the partially polymerized supporting monomers viz., styrene (St) and divinylbenzene (DVB) via suspension polymerization. The resulting copolymer beads containing surface-enriched with methyl group were converted into a catalyst by chlorination followed by a quaternization process. Two groups (I and II) of SE-PSPTC beads were prepared by fixing the crosslinking amount (DVB) as 2% and 6%, respectively, 25% of VT as a common active site functionality and the rest of the contribution was styrene. Each group contains six different catalysts based on the concentration of active sites on the surface which in turn depends upon the partial polymerization time (PPT) of St/DVB i.e., 0, 3, 6, 9, 12, and 15 hrs. These two different groups and 6 different catalysts categories in each were prepared with the objective to learn the influence of higher/lower crosslinking in the process of surface-grafting of poly(VT) on poly(St/DVB) and to determine the optimized partial polymerization time to bring the maximum active site on the surface. The level of enrichment of an active site of all the catalysts were determined through [chloride], FT-IR, SEM, EDAX, and ESCA analyses. The gradual increase of [chloride], C-N peak intensity from FT-IR, rough surface/nodules concentration from SEM, % of surface chloride from EDAX, decreasing/increase trend of surface carbon/surface chloride in ESCA analyses starting with 0 VT to 15 VT irrespective groups, confirms the gradual increase of active site on the surface beads based on the PPT. The results of [chloride], spectral analyses and the rate constants of all the catalysts in dichlorocarbene addition to various olefines ensure that 9 VT-SE-PSPTC was the best catalyst beads in both the groups due to its two-fold enhancement rather than the conventional catalyst (0 VT) of both groups although we had added the same amount of VT in both preparations.

Acknowledgment

One of the authors, E.M. thanks to the University Grants Commission, New Delhi, Govt. of India, for financial assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.