35
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Thermal Field-Flow Fractionation of Initially Dilute Polymer Solutions as a Shear Degradation Model. Scaling Model of Macromolecule Degradation at Concentrations Exceeding the Critical Entanglement Value

Pages 583-604 | Received 29 Jul 1998, Accepted 01 Jan 1999, Published online: 07 Feb 2007
 

Abstract

Experimental data are presented on thermal field-flow fractionation (TFFF) of anionic polystyrene (PS) samples in the range M = (4–12)·106. They show extensive degradation of macromolecular chains at relatively low rate gradients (G < 30 s−1). The possibility of the influence of relaxation effects on the shape of fractograms and the elution volumes of the samples was taken into account. Mean concentrations in accumulative zones were evaluated. It was shown that, in all cases when degradation was observed, the accumulative zones are the layers of entangled macromolecules. The use of the scaling approach made it possible to simulate layer extension toward the channel center under the influence of the rate gradient. It was shown that, during stretching, the layer is destroyed into blobs, the size of which is determined by experimental conditions. An expression for the critical gradient leading to layer degradation was derived. Quantitative evaluations of fragment sizes and critical gradients obtained from the model are in good agreement with experimental data. The model developed for specific experimental conditions confirms the proposed general mechanism of the so-called shear degradation of macromolecules. The physical picture of degradation in the TFFF channel was considered.

ACKNOWLEDGMENTS

I performed the experiments at the Institute of Analytical Chemistry of the Czech Academy of Science (Brno) and expresses my gratitude to Dr. K. Kleparnik for help in carrying them out. This work became possible owing to numerous discussions with the late Prof. S. Ya. Frenkel.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.