198
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical Analysis of Thermal Stresses in Electro-discharge Diamond Grinding

, &
Pages 119-140 | Published online: 07 Feb 2007
 

Abstract

Excessive heat generated at the machining zone, during Electro-discharge diamond grinding (EDDG), is the major cause of thermal stresses, untempered martensite, overtempered martensite, and cracks. Therefore, the key to achieve good surface integrity in a machined part is to prevent excessive temperature and thermal stresses generated during machining process. A finite element model has been developed to estimate thermal stresses during EDDG when the current is switched-off. First, the developed code calculates the temperature in the workpiece and then the thermal stress field is estimated using this temperature field. Computations were carried out in plane strain condition for different down feeds of the grinding wheel. The effects of time of grinding and feed on thermal stress distribution have been reported. The thermal stresses are found to be higher near top surface at initial time of grinding but shifted away towards bottom after some grinding time.

Acknowledgment

Financial assistance for this work was granted by Council of Scientific and Industrial Research (CSIR), Government of India, through the project no. CSIR/ME/1999/0186 entitled “Abrasive Electro-discharge Grinding of Advanced Engineering Materials.” Authors acknowledge the suggestions of Prof. G. K. Lal of I.I.T. Kanpur during this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.