52
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

ACYCLIC NUCLEOSIDE/NUCLEOTIDE ANALOGUES WITH AN IMIDAZOLE RING SKELETON

&
Pages 1599-1614 | Received 05 Jul 2000, Accepted 23 Feb 2001, Published online: 17 Aug 2006
 

Abstract

Syntheses of a few acyclic nucleoside and acyclic nucleoside phosphonate analogues containing an imidazole ring have been reported. These analogues include methyl 1-(2-hydroxyethoxymethyl)imidazole-4,5-dicarbo-xylate (1), 4,5-dicarbamoyl-1-(2-hydroxyethoxymethyl)imidazole (2), 4,5-dicya-no-1-(2-hydroxyethoxymethyl)imidazole (4), Methyl 1-(2-bromoethoxymethyl)- imidazole-4,5-dicarboxylate (7), 4,5-dicyano-(2-bromoethoxymethyl)imidazole (8), and Methyl 1-(2-phosphonomethoxyethyl)imidazole (10). Also reported are a few potential prodrugs of the above compounds, including the acetyl derivatives 5 and 6 (of 1 and 4, respectively), and the diethyl phosphonate ester 9 (of 10). In addition, the corresponding benzyl-protected precursors 11 and 12 (of 1 and 4, respectively), along with their common hydrolysis product, 1-(2-benzyloxy-ethoxymethyl)-4,5-imidazoledicarboxylic acid (3), are reported. Another potential prodrug included in the list is 1-(2-acetoxyethyl)-4,5-dicyanoimidazole (15). The compounds were screened for in vitro antiviral activity against a wide variety of herpes and respiratory viruses. The most active compound was the phosphonate analogue 9 which exhibited an anti-measles virus activity with an EC50 of <2.5 μg/mL and an SI value of > 176.

ACKNOWLEDGMENTS

This research was supported by a grant from the National Institutes of Health (# 1RO1CA71079). Mass spectral data were run at the Michigan State University Mass Spectrometry Facility which was supported, in part, by a grant (DRR-00480) from the Biotechnology Research Technology Program, National Center for Research Resources, National Institutes of Health. The authors gratefully acknowledge Dr. Chris Tseng of NIAID, Dr. Earl Kern of the University of Alabama, Birmingham, and Drs. Robert Sidwell, Dale Barnard, and D. Smee of the Utah State University, Logan. for all the antiviral screening results reported in this paper, and described in reference Citation[44].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 606.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.