221
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Characterization and Elucidation of Coordination Requirements of Adenine Nucleotides Complexes with Fe(II) Ions

&
Pages 1757-1780 | Received 06 Jan 2003, Accepted 13 Mar 2003, Published online: 07 Feb 2007
 

Abstract

In spite of the significant role of iron ions-nucleotide complexes in living cells, these complexes have been studied only to a limited extent. Therefore, we fully characterized the ATP:Fe(II) complex including stoichiometry, geometry, stability constants, and dependence of Fe(II)-coordination on pH. A 1:1 stoichiometry was established for the ATP:Fe(II) complex based on volumetric titrations, UV and SEM/EDX measurements. The coordination sites of ferrous ions in the complex with ATP, established by 1H-, 31P-, and 15N-NMR, involve the adenine N7 as well as Pα, Pβ, and Pγ. Coordination sites remain the same within the pH range of 3.1–8.3. By applying fluorescence monitored Fe(II)-titration, we established a log K value of 5.13 for the Fe(ATP)2− complex, and 2.31 for the Fe(HATP) complex. Ferrous complexes of ADP3− and AMP2− were less stable (log K 4.43 and 1.68, respectively). The proposed major structure for the Fe(ATP)2− complex is the ‘open’ structure. In the minor ‘closed’ structure N7 nitrogen is probably coordinated with Fe(II) through a bridging water molecule. The electronic and stereochemical requirements for Fe(II)-coordination with ATP4− were probed using a series of modified-phosphate or modified-adenine ATP analogues. We concluded that: Fe(II) coordinates solely with the phosphate-oxygen atom, and not with sulfur, amine, or borane in the cases of phosphate-modified analogues of ATP; a high electron density on N7 and an anti conformation of the adenine-nucleotide are required for enhanced stability of ATP analogues:Fe(II) complexes as compared to ATP complexes (up to more than 100-fold); there are no stereochemical preferences for Fe(II)-coordination with either Rp or Sp isomers of ATP-α-S or ATP-α-BH3 analogues.

Acknowledgments

This work was supported in part by the Marcus Center for Medicinal Chemistry. The help of Mr. Haviv Grisaru with SEM-EDX measurements is highly appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 606.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.