1,226
Views
130
CrossRef citations to date
0
Altmetric
Original Articles

NITROGEN FERTILIZATION OPTIMIZATION ALGORITHM BASED ON IN-SEASON ESTIMATES OF YIELD AND PLANT NITROGEN UPTAKE

, , , , , , , , , & show all
Pages 885-898 | Published online: 14 Feb 2007
 

Abstract

Current methods of determining nitrogen (N) fertilization rates in winter wheat (Triticum aestivum L.) are based on farmer projected yield goals and fixed N removal rates per unit of grain produced. This work reports on an alternative method of determining fertilizer N rates using estimates of early-season plant N uptake and potential yield determined from in-season spectral measurements collected between January and April. Reflectance measurements under daytime lighting in the red and near infrared regions of the spectra were used to compute the normalized difference vegetation index (NDVI). Using a modified daytime lighting reflectance sensor, early-season plant N uptake between Feekes physiological growth stages 4 (leaf sheaths lengthen) through 6 (first node of stem visible) was found to be highly correlated with NDVI. Further analyses showed that dividing the NDVI sensor measurements between Feekes growth stages 4 and 6, by the days from planting to sensing date was highly correlated with final grain yield. This in-season estimate of yield (INSEY) was subsequently used to compute the potential N that could be removed in the grain. In-season N fertilization needs were then considered to be equal to the amount of predicted grain N uptake (potential yield times grain N) minus predicted early-season plant N uptake (at the time of sensing), divided by an efficiency factor of 0.70. This method of determining in-season fertilizer need has been shown to decrease large area N rates while also increasing wheat grain yields when each 1m2 area was sensed and treated independently.

Acknowledgments

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.