79
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Bicarbonate Had Greater Effects Than High pH on Inhibiting Root Growth of Zinc‐Inefficient Rice Genotype

, &
Pages 399-415 | Published online: 15 Aug 2006
 

Abstract

Effects of bicarbonate (10 mM as NaHCO3) and high pH (pH 8 buffered with HEPES) separately on root growth and accumulation of organic acids in the roots of zinc (Zn)‐efficient (IR36) and Zn‐inefficient (IR26) rice genotypes (Oriza sativa L.) were investigated in this study. The results indicated that shoot dry matter yields were decreased more by bicarbonate than by high pH for the Zn‐inefficient genotype, but not affected for the Zn‐efficient genotype. Root dry weights, especially root length, was significantly decreased by bicarbonate and high pH treatments for the Zn‐inefficient genotype, whereas was considerably enhanced by only bicarbonate treatment for the Zn‐efficient rice genotype. The reduction in root growth of the Zn‐inefficient rice genotype and the enhancement of root length in the Zn‐efficient genotype were greater when plants grown with bicarbonate than with high pH treatment. Accumulation of malate, citrate, and fumarate in roots of the two genotypes increased considerably due to both high pH and bicarbonate treatments, but to a greater extent for the Zn‐inefficient than for the Zn‐efficient cultivars. After an 8‐day treatment, more organic acids accumulated in the roots of the Zn‐inefficient genotype (IR26) when plants grown with bicarbonate than at high pH, but this was not the case for the Zn‐efficient genotype. The influence of root growth by bicarbonate appeared to be one of the major factors for the sensitivity of rice genotypes to Zn deficiency in calcareous soils. The greater inhibitory effect of bicarbonate than high pH on root growth of the Zn‐inefficient genotype might result from an excessive accumulation and inefficient compartmentation of organic acids, particularly citrate and malate, in the root cells.

Acknowledgments

The authors thank the Alexander von Humboldt Foundation of Germany for providing an AvH research fellowship to Dr. Xiaoe Yang, and Iranian High Education Ministry for providing a scholarship to Ms. Rogie Hajiboland. This research was also partly supported by the Outstanding Young Scientist Grant from the Natural Science Foundation of China. Authors are grateful to Drs. G. S. Kush and H. U. Neue (IRRI) for their kindly supply of rice seeds, and Dr. S. J. Chapman (Macaulay Land Use and Research Institute, UK) for his critical comments and English correction on the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.