69
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Nitrogen Availability for Maize from a Rolling Pampa Soil After Addition of Biosolids

, , , &
Pages 431-441 | Published online: 24 Jun 2011
 

Abstract

The objective of this paper was to evaluate the influence of different rates of biosolids on the soil nitrogen (N) availability for maize and its residuality. A field experiment was developed in a typic Argiudol located in the NE of the Buenos Aires Province. Maize was sown for two consecutive years 1997–1999. Biosolids from a sewage treatment plant of Buenos Aires outskirts were superficially applied to the soil and incorporated by plowing. There were eight treatments: Check; 8, 16, and 24 Mg of dry biosolid ha−1; 8 and 16 Mg of dry biosolid ha−1 applied one year before, 100 and 150 kg N ha−1 of calcium ammonium nitrate (CAN). The sampling and determinations were done during the second maize cycle. At presowing (PS), sowing (S), 6 expanded leaves (V6), 12 expanded leaves (V12), and Flowering (Fl) composite soil samples from 0–40 cm depth were obtained to determine ammonium and nitrate contents. At Fl maize plants were sampled in order to determine total biomass and N content. The N‐nitrate content in the soil was significantly increased by the biosolids application (p < 0.05), and varied for each increment depending on the biosolids rates and the phenological stage. After 30 days from the incorporation the increases of 1.19, 1.34, and 2.05% were observed for N‐nitrates for 8, 16, and 24 Mg ha−1, respectively. The contribution of mineral N from the biosolids was 2.48, 6.46, and 5.01 kg N Mg−1 when the rates were incremented from 0–8, 8–16, and 16–24 Mg ha−1, respectively. The nitrogen mineralization followed a release pattern with a maximum value of 296 kg N‐nitrate ha−1 at sowing for 24 Mg ha−1. Since then, the release of mineral nitrogen decreased significantly till Fl. The N‐nitrates values variation with the temperature adjusted to polinomic functions. The mineral N released from the biosolids increased as a response to the increment of soil temperature and then decreased due to the maize nitrogen absorption and the potentially mineralized nitrogen exhaustion. The application of 150 kg N ha−1 as CAN incremented significantly the soil N‐nitrate content and equalized 16 and 24 Mg of dry biosolids ha−1 at V6. But, no synchronism between the high nitrate releasing from biosolids and the increment in the nitrogen absorption by maize was observed. This fact generates a surplus of nitrate that incremented the potential of nitrogen loss by lixiviation. We observed a residual effect from the biosolids that were applied the previous year. This contribution represented the 35% of the maize requirements and was similar to the nitrate content observed in Bio 16. The biosolids might be a valuable source of nitrogen for maize crop if the synchronism between the soil supply and maize demand is observed in order to avoid nitrates surplus.

Acknowledgments

The authors want to thank AGUAS ARGENTINAS S.A. for financial support. We are grateful to Ing. Agr. Diego Ustariz for providing the experimental site and Hugo Cánovas for reading the manuscript and providing helpful comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.