428
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Grapevine Rootstock Effects on Lime‐Induced Chlorosis, Nutrient Uptake, and Source–Sink Relationships

, &
Pages 1451-1465 | Published online: 16 Aug 2006
 

Abstract

The experiment considered Vitis vinifera L. cv. “Pinot blanc” clone VCR5 grafted on a lime‐susceptible (3309 C) and a lime‐tolerant (41 B) hybrid rootstock and grown in 45 L pots of a calcareous and a non‐calcareous soil. Each treatment included plants bearing clusters and plants without clusters; in the latter case the bunches were removed 15 days before blooming. During the third growth year, shoot length, leaf chlorophyll (Chl), and mineral element concentrations were recorded. At the end of the growing cycle the grapevines were divided into leaves, shoots, berries, cluster stems, trunk, roots, and dry matter and mineral element composition per organ were analyzed. The 41 B rootstock showed its lime‐tolerance by exhibiting little reduction of shoot length when grown in the calcareous soil as compared to the non‐calcareous one, while 3309 C growing in the calcareous soil induced a dramatic shoot length reduction. The rootstock also affected the leaf chl concentration according to the known degree of lime‐tolerance/susceptibility: “Pinot blanc” grafted on 3309 C and growing on the calcareous soil showed chlorotic leaves while the plants grafted on 41 B had green leaves; cluster removal did not affect leaf chl. The fruit load (expressed as berry dry matter) was strongly affected by the soil and the rootstock; in the calcareous soil 41 B rootstock produced twice as high cluster dry matter than did 3309 C. A higher macronutrient uptake for the plants growing under lime‐stress conditions was affected by 41 B rootstock. Cluster removal in plants grown on calcareous soil produced different effects, as follows: in the case of 41 B rootstock, a redistribution of photosynthate to other sinks like shoot tip and roots occurred, while in the case of 3309 C only the roots benefited. Under lime‐stress condition the plants grafted on 41 B took up more iron (recorded as total amount in the leaves) than did those grafted on 3309 C.

Acknowledgments

The authors want to thank G. Bruzzi (lab crew) for his contribution to the project and MURST (Italian Ministery for University and Scientific and Technological Research) for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.