199
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Interaction of Different Iron Chelates with an Alkaline and Calcareous Soil: A Complementary Methodology to Evaluate the Performance of Iron Compounds in the Correction of Iron Chlorosis

, &
Pages 1943-1954 | Published online: 14 Feb 2007
 

Abstract

A great number of studies have shown that the stability of iron chelates as a function of pH is not the unique parameter that must be considered in order to evaluate the potential effectiveness of Fe‐chelates to correct iron chlorosis in plants cultivated in alkaline and calcareous soils. In fact, other factors, such as soil sorption on soil components or the competition among Fe and other metallic cations for the chelating agent in soil solution, have a considerable influence on the capacity of iron chelates to maintain iron in soil solution available to plants. In this context, the aim of this work is to study the variation in concentration of the main iron chelates employed by farmers under field conditions—Fe‐EDDHA (HA), Fe‐EDDHMA (MA), Fe‐EDDHSA (SA), Fe‐EDDCHA (CA), Fe‐EDTA (EDTA), and Fe‐DTPA (DTPA)—in the soil solution of a calcareous soil over time. To this end, soil incubations were carried out using a soil:Fe solution ratio corresponding to soil field capacity, at a temperature of 23°C. The soil used in the experiments was a calcareous soil with a very low organic matter content. The variation in concentration of Fe and Fe‐chelates in soil solution over time were obtained by measuring the evolution in soil solution of both the concentration of total Fe (measured by AAS), and the concentration of the ortho‐ortho isomers for Fe‐EDDHA and analogs or chelated Fe for Fe‐EDTA and Fe‐DTPA (measured by HPLC). The following chelate samples were used: a HA standard prepared in the laboratory and samples of HA, MA, SA, CA, Fe‐EDTA, and Fe‐DTPA obtained from commercial formulations present in the market. The percentage of iron chelated as ortho‐ortho isomers for HAs was: HA standard (100%); HA (51.78%); MA (60.06%); SA (22.50%); and CA (27.28%). In the case of Fe‐EDTA and Fe‐DTPA the percentages of chelated iron were 96.09 and 99.12, respectively. Results show that it is possible to classify the potential effectiveness of the different types of iron chelates used in our experiments as a function of two practical approaches: (i) considering the variation of total iron in soil solution over time, MA is the best performing product, followed by HA, CA, SA, DTPA, EDTA, and ferrous sulfate in the order listed and (ii) considering the capacity of the different iron chelates to maintain the fraction of chelated iron (ortho‐ortho isomers for HA, MA, SA, and CA and total chelated iron for EDTA and DTPA) in soil solution, the order is: SA > CA > HA > MA > EDTA ≈ DTPA. This result, that is related to the nature of the chelate and does not depend on the degree of chelated Fe in the products, indicates that SA and CA might be very efficient products to correct iron chlorosis. Finally, our results also indicate the suitability of this soil incubation methodology to evaluate the potential efficiency of iron compounds to correct iron chlorosis.

Acknowledgments

The authors wish to thank M. David Rhymes for his help during the preparation of the English version of the paper, to J. Garrigo for his help in the classification of the soil used in the experiments and to J. J. Lucena for his valuable comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.