32
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Changes in Chemical Composition of Australian Waxflowers Due to Soil Applications of Nitrogen and Assessment of Nitrogen Status by Tissue Analysis

&
Pages 2321-2341 | Published online: 14 Feb 2007
 

Abstract

Three field experiments were conducted to investigate the effects of soil‐applied nitrogen (N) on plant chemical composition, nutrient removal, and the use of plant analysis to assess N status of Australian waxflowers. Experiments were conducted in commercial plantings of Chamelaucium uncinatum cultivar Alba and a Chamelaucium hybrid (C. floriferum × C. uncinatum) known locally as Walpole wax, at 3 sites in South Australia. Nitrogen, as ammonium nitrate, was applied at rates up to 160 g plant−1 over several side dressings during the growing season. To assess plant nutrient status, stem tips (25–40 mm long tips of stems) were sampled during the growing season and whole stems at harvest.

Nitrogen concentration in both stem tips and whole stems was sensitive to variations in N supply; however, the magnitude of the effect varied between sampling times and sites. In stem tips sampled during spring, the increase in N concentrations ranged from 19.8% at site 2 to 74.6% at site 1. Nitrogen concentrations in stem tips were consistently greater than concentrations in whole stems. The application of N decreased phosphorus (P) concentrations in whole stems and copper (Cu) concentrations in stem tips and whole stems. There was no consistent effect of applied N on potassium (K), calcium (Ca), magnesium (Mg), boron (B), zinc (Zn), and manganese (Mn) concentrations in either plant part sampled. Nutrient removal by flowering stems, in order from greatest to least, was N > K > Ca > P > Mg > Mn > B > Zn > Cu.

Based on 1800 plants ha−1, it was estimated that for N, P, and K, 121.9, 15.4, 60.1 kg ha−1, respectively, was removed in harvested stems. Based on poor sensitivity, the lack of a sharp transition zone between deficient and adequate N concentrations and the lack of consistent relationships between N concentration in stem tips and yield response, it is concluded that N concentration in stem tips is not a useful indicator of the N status of waxflower plants.

Acknowledgments

We thank Rural Industries Research and Development Corporation and the Australian Protea Growers Association for financial support which made this work possible.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.