183
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Iron Availability as Affected by Soil Moisture in Intercropped Peanut and Maize

, &
Pages 2425-2437 | Published online: 14 Feb 2007
 

Abstract

Pot and rhizobox experiments were carried out to investigate the iron availability in intercropped peanut and maize as affected by soil moisture. Results from pot experiment showed that the root growth of peanuts were significantly inhibited at 25% soil water content compared to those at 15% soil water content. The chlorophyll content in the new leaves of intercropped peanut decreased and leaves became chlorotic at 25% soil water content. There were no significant differences in the active iron concentration in new leaves of peanut between 15% and 25% soil water content. The soil pH were higher in peanut rhizosphere than in bulk soil at the early, middle, and harvest stages for both 15% and 25% soil water content. The soil bicarbonate content was also higher in peanut rhizosphere than in bulk soil for both 15% and 25% soil water content. There was significant difference in soil bicarbonate of peanut rhizosphere between 15% and 25% soil water content at the harvest stage. The available iron content in both rhizosphere soil and bulk soil were lower than 3.5 mg kg−1 in all growth stages at both 15% and 25% soil water content. Results from rhizobox experiment showed that citric acid, maleic acid, and fumaric acid in exudates of peanuts significantly increased at 25% soil water content compared to that at 15% soil water content. The apoplastic iron content of peanut roots decreased by 0.216 and 0.409 µmol g−1 fresh weight−1 (FW) from the 28th growth day to 42nd growth day at 25% and 15% soil water content, respectively. The mobilizing ability of apoplastic iron in intercropped peanuts at 15% soil water content was 20.1% higher compared to that at 25% soil water content. It is concluded that improvement of iron nutrition of peanuts with intercropping with maize could be affected by soil moisture condition.

Acknowledgments

The authors are grateful to the Major State Basic Research Development Program of the People's Republic of China (Project number G1999011709) and to Dr. J.B. Shen at China Agricultural University for HPLC analysis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.