42
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Copper Uptake and Tolerance in Two Contrasting Ecotypes of Elsholtzia argyi

, , , &
Pages 2067-2083 | Published online: 14 Feb 2007
 

Abstract

Information is desired on plant species that have a great potential in phytoremediation of copper (Cu) contaminated soils. Two contrasting ecotypes of Elsholtzia argyi were comparatively studied using nutrient solution culture for their growth response and uptake, distribution, and translocation of Cu. The results show that the ecotype from an old mined area (Sanmen-ecotype) had greater tolerance to Cu than that from the nonmined area (Jiuxi-ecotype) based on dry matter yield at different Cu supply levels. Inhibited root and leaf growth was noted at the external Cu levels > 50 µmol L−1 for the Sanmen-ecotype, and at the Cu supply levels > 5 µmol L−1 for the Jiuxi-ecotype. Stem growth was most sensitive to Cu toxicity in E. argyi, and was inhibited at the Cu levels ≥ 2.5 µmol L−1 for Jiuxi-ecotype and ≥ 25 µmol L−1 for Sanmen-ecotype. Root Cu concentrations were higher in Sanmen-ecotype than in Jiuxi-ecotype, but leaf, especially stem Cu concentrations were much lower in the former than in the latter. Furthermore, Jiuxi-ecotype was much more efficient than Sanmen-ecotype in the translocation of Cu from root to the shoot, and it had higher ratios of stem/root and leaf/root Cu concentration. At the Cu supply levels higher than 10 µmol L−1, root concentrations of potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) considerably decreased in Jiuxi-ecotype, but were not affected or even increased in Sanmen-ecotype. Zinc concentrations in the stems, particularly in the leaves of Sanmen-ecotype increased by 3 folds, but were hardly changed in Juixi-ecotype when grown at the Cu levels higher than 10 µmol L−1. These results indicate that the Sanmen-ecotype of E. argyi is a Cu-tolerant ecotype, and its tolerance to high Cu levels was mainly related to its extraordinary capability to restrict Cu uptake, especially Cu translocation from root to the shoot, probably by competitive uptake and translocation of Zn.

Acknowledgments

The study was, in part, supported by a grant (#t29977017) from the National Natural Science Foundation of China and a grant (#2002CB410804) from the Science and Technology Ministry of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.