118
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Organic Matter Influence in Cadmium Uptake by Sorghum

, , &
Pages 2175-2188 | Published online: 14 Feb 2007
 

Abstract

The influence of soil organic matter (OM) in the uptake of cadmium (Cd) by Sorghum will be studied in order to get a better knowledge in the yield and understanding of detoxification mechanisms of soils. Plants were grown for 60 days in a greenhouse pot experiment using a contaminated soil with 4.5 and 35 mg Cd kg−1, in absence and presence of OM. An Irish peat moss (70 g kg−1 of soil) was added as OM. In the presence of OM the biomass production of root and shoot was increased with a positive correlation between biomass increment and contamination level. For experiments with 35 mg Cd kg−1 of soil the biomass production was increased of about 7 times in the presence (vs. absence) of OM. Although the presence of OM had decreased Cd root concentration by decreasing Cd bioavailability in soil, the increase of biomass in presence of OM led to an increase of about 3 times on the Cd amount in shoot, result that can be important in soil phytoremediation.

Acknowledgments

This work is under the Research Project PRAXIS/P/QUI/10034/98 of FCT. It has also the financial support supplied by the Portuguese Education Ministry through the PRODEP II–Ph.D. fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.