71
Views
12
CrossRef citations to date
0
Altmetric
Research Article

SYNTHESIS AND IN VITRO AND IN VIVO EVALUATION OF [11C]METHYL-BIII277CL FOR IMAGING THE PCP-BINDING SITE OF THE NMDA RECEPTOR BY PET

, , , , &
Pages 123-139 | Published online: 11 Nov 2002
 

ABSTRACT

A new benzomorphane derivative, [11C]methyl-BIII277CL, was evaluated as a potential radiotracer for visualizing the PCP-binding site of the N-methyl-D-aspartate (NMDA) receptor by positron emission tomography (PET). Methyl-BIII277CL was prepared by reacting the desmethyl compound (BIII277CL) with dimethylsulfate. The pharmacological profile of methyl-BIII277CL was determined by in vitro receptor-screening assays. At a concentration of 100 nM, methyl-BIII277CL showed a significant interaction with the PCP-binding site of the NMDA receptor (79% inhibition of specific binding) and the σ1-binding site (46% inhibition). In displacement assays using mice cortical membranes, methyl-BIII277CL displayed a high affinity at the PCP-binding site of the NMDA receptor (Ki = 49 ± 14 nmol/L) and a 130-fold lower interaction with the σ1-binding site (Ki = 6.35 ± 0.26 µmol/L). For saturation experiments and in vivo studies, methyl-BIII277CL was radiolabeled with 11C at the O-position of the desmethyl precursor (BIII277CL) using [11C]methyliodide with a specific activity of 35–70 GBq/µmol at the end of synthesis (EOS). In saturation assays using rat whole brain membranes [11C]methyl-BIII277CL showed a Kd of 6 ± 1 nmol/L and a Bmax of 670 ± 154 fmol/mg protein. Biodistribution and PET studies in rats and pigs, however, indicated a lack of specific binding and unfavorable pharmacokinetics. Kinetic modeling using the 1-tissue compartment model demonstrated for [11C]methyl-BIII277CL a low distribution volume (Dv = 0.98 mL/mLtissue) and very high values for the kinetic parameters K1 and k2 (K1 = 0.36 mL/mLtissue/min and k2 = 0.37 min−1) in pig cortex. [11C]methyl-BIII277CL, due to the lack of specificity in vivo, may not be a candidate for imaging the PCP-binding site of the NMDA receptor.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.