428
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Third Phase Formation in the Solvent Extraction System Ir(IV)—Cyanex 923

, , &
Pages 545-559 | Received 11 Aug 2004, Accepted 06 Apr 2005, Published online: 18 Aug 2006
 

Abstract

The splitting of a system from biphasic to triphasic was studied in the liquid‐liquid extraction of Ir(IV) and HCl using Cyanex 923 (C923). The limiting organic concentrations (LOC) of Ir(IV), which are the maximum possible concentrations of Ir(IV) in the organic phase without the formation of a third phase, were determined under different experimental conditions. The experimental conditions investigated were: concentrations of HCl and NaCl in the aqueous phase, concentrations of C923 and a modifier (tributyl phosphate (TBP) or decanol) in the organic phase, and an organic phase made with different diluents such as n‐octane, n‐nonane, n‐dodecane, kerosene, cyclohexane, toluene, and xylene. The formation of a third phase depends on the concentration of Ir(IV) and HCl in the aqueous phase, as well as on the other experimental conditions. The third phase appeared without Ir(IV) when the concentration of HCl in the equilibrated aqueous phase was 3.5 M and the organic phase contained 10% (v/v) C923/kerosene. The maximum LOC of Ir(IV) was obtained when the initial concentration of HCl in the aqueous phase was 2 M. The LOC of Ir(IV) can be increased though the addition of typical solvent modifiers (such as TBP or decanol) in the organic phase. The LOC of Ir(IV) varied significantly when it was extracted from an aqueous solution containing different concentrations of NaCl. The values obtained for the LOC using different diluents were in the following decreasing order: toluene ≈ xylene>cyclohexane>n‐octane>n‐nonane>kerosene>n‐dodecane. No third phase was detected when toluene and xylene were used as diluents. In the case of cyclohexane, no third phase was observed when the aqueous phase contained 4 M HCl. Spectral studies were performed to investigate the chemical composition of the third phase obtained with Ir(IV)‐HCl‐C923.

Acknowledgments

This work was financed by the European Commission (contract CRD‐CT‐2000‐00300) within the framework of the Growth Program and MCYT (contract PPQ2002‐04267). C. S. Kedari acknowledges the financial support of DURSI grant 2002PIV‐00065 (through the Generalitat of Catalonia).

Additional information

Notes on contributors

C. S. Kedari

on leave from Bhabha Atomic Research Centre, Trombay, Mumbai.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.