49
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Complexes of N‐Picolinoyl‐N′‐2‐furanthiocarbohydrazide with Oxovanadium(IV), Manganese(III), Iron(III), Cobalt(II), Nickel(II), Copper(II), Zinc(II), and Cadmium(II)

&
Pages 1769-1786 | Received 08 Jul 2003, Accepted 13 Jun 2004, Published online: 16 Nov 2010
 

Abstract

The complexes [M(L)(H2O) x ] n [M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] and [M2(L)3] n [M = Mn(III), Fe(III)] and [VO(HL)2] with N‐picolinoyl‐N′‐2‐furanthiocarbohydrazide (H2L) have been prepared and characterized by elemental analyses, magnetic susceptibility measurement, electronic, NMR (1H and 13C), IR and FAB mass spectral data. Physico‐chemical studies indicate that the complexes are polymeric in nature. The room temperature ESR spectra of [VO(HL)2] and [Cu(L)] n complexes yield ⟨g⟩ values, characteristic of square‐pyramidal and square‐planar complexes, respectively. The Mössbauer spectra of [Fe2(L)3] n at room temperature and at 78 K suggest the presence of high‐spin (S = 5/2) and low‐spin (S = 1/2) forms of Fe(III) in the same complex at both temperatures. The complexes of OV(IV), Fe(III), Ni(II), and Cd(II) show semiconducting behaviour in the solid state in the temperature range 307–397 K, with a band gap of 0.18–0.44 eV. The other complexes are insulators.

Acknowledgment

The authors are thankful to Indian Institute of Science, Bangalore, for recording solid‐state 13C NMR spectra.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 674.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.