107
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Stabilization of Constraints of Multibody System Dynamics

&
Pages 25-55 | Received 01 May 2002, Published online: 30 Aug 2006
 

Abstract

Numerical algorithms for the solution of nonlinear algebraic equation systems are discussed. Special application to the mechanism and multibody system kinematic analysis, as well as to the problems of constraint stabilization during dynamics simulation is regarded. Special attention is paid to the approaches of a separate solution of the differential equations and constraint stabilization. Numerical procedures that are effective additions to the well-known algorithms based on the Newton-Raphson method are presented. The problems of loss of precision and achievement of large unreal increments of the varying parameters are discussed. The traditional Newton-Raphson method is modified by applying a step reduction procedure that is developed numerically for the symbolic form of kinematic and dynamic equations. An optimization method for stabilization of constraints using the mass matrix of dynamic equations is suggested. According to the objective function defined the stabilization procedure provides minimal deviations of the parameters and their velocities with respect to the solution of the differential equations. No generalized coordinate partitioning is required either for solution of the dynamic equations or for stabilization of the constraints. Several examples of kinematic analysis of single and four contour plane mechanisms and constraint stabilization are solved, and the results are compared. The advantages of the algorithms developed are tested with a high-degree of initial deviation from the real solution. It is also shown that the step correction algorithm could provide admissible solution even when, in many cases, the classical approaches are not reliable. An example of the direct and inverse kinematic problem solutions of the four-degrees-of-freedom spatial platform is presented.

Acknowledgments

The financial support of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. Results of this investigation were reported at the International Conference on Multifield Problems, University of Stuttgart, April 8–10, 2002, Stuttgart, Germany.

Communicated by S. Velinsky

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.