75
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Novel Na-3-Mica: Alkaline Earth Cation Exchange and Immobilization

, , &
Pages 679-694 | Received 01 Feb 2002, Published online: 15 Aug 2006
 

Abstract

The cation-exchange capacities for the alkaline earth metals Ba, Mg, and Ca, and their immobilization in the interlayers of a novel swelling fluorine mica (Na-3-mica) with a high-layer-charge density were studied. The mica was fully exchanged or saturated with Ba, Mg, and Ca ions and the cation-exchange capacities were determined to be 246, 338, and 322 meq (100 g)−1, respectively, on anhydrous basis of mica. The chemical analyses of the saturated micas indicated that about three exchangeable interlayer sodium ions per unit cell existed in the mica as a result of the total negative layer charge due to both Mg vacancies in octahedral sheets and Al substitution in tetrahedral Si sheets of the silicate. The Ba, Mg, and Ca leachabilities of the saturated micas were investigated in 0.5 M NaCl background solutions at room temperature and these were compared to the Sr leachability of the Sr-saturated mica. The degree of the cation immobilization in the interlayers increased in the order of Ca<Sr<Ba<Mg. This could be explained by the interlayer spacings and structures of the saturated micas.

Acknowledgments

This research was supported in part by the Interfacial, Transport, and Separation Process, Division of Chemical and Transport Systems, National Science Foundation under Grant No. CTS-9911580.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.