107
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Uniform Particles for the Reversed-Phase Separation of Proteins with High-Resolution and High-Column Efficiency

, , , &
Pages 1425-1438 | Published online: 15 Feb 2007
 

Abstract

A low‐sized, uniform and polymer‐based high‐performance liquid chromatography (HPLC) packing material capable of making reversed‐phase separation of proteins with high resolution and with high column efficiency was developed. By a multistage‐swelling and polymerization protocol, 5 µm‐uniform‐porous poly(styrene‐co‐divinylbenzene) particles with relatively larger pores particularly suitable for protein separation were synthesized by starting from a low‐sized seed latex with high average molecular weight and by using a diluent phase comprised of dibutylphthalate and toluene. By the use of synthesized beads as packing material in HPLC, high‐resolution liquid chromatograms were obtained in the gradient separation of selected proteins (i.e., ribonuclease‐A, lysozyme, cytochrome C, and albumin). In the chromatographic runs, the flow rate of the mobile phase was increased fourfold by preserving the resolution power of the column material under gradient conditions. The theoretical plate numbers (TPN) up to 12.500 plates/m were observed by using cytochrome C as the analyte. TPN values determined by the proteins were significantly higher relative to the similar uniform packing materials larger in size (i.e., 7.5–10 µm) obtained by different polymerization methods.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.