17
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

SIMS INVESTIGATIONS OF GETTERING CENTERS IN ION-IMPLANTED AND ANNEALED SILICON

, , , &
Pages 47-55 | Received 12 Feb 2001, Accepted 07 May 2001, Published online: 16 Feb 2007
 

ABSTRACT

High-energy ion implantation in silicon leads to the formation of defects around the mean projected ion range R p. These defects are capable of collecting unwanted impurities like metal atoms. A similar effect has been observed in the depth range around half of the projected ion range, R p/2. This gettering ability around R p/2 is supposed to rely on excess vacancies, generated by the implantation process itself. SIMS is a preferential tool in the detection of gettering centres: If copper is applied at the backside of the sample and trapped in the gettering layers during annealing, enrichments of copper in certain areas can be seen in SIMS depth profiles Citation[1]. If the R p/2-effect was caused by excess vacancies, then one attempt to remove these additional gettering centres would be to implant additional Si atoms which could recombine with the vacancies: In order to test this assumption, three Si+ implanted samples were implanted with additional Si+ ions having a projected range that corresponds to R p/2. After application of copper and annealing, the copper distribution was investigated by SIMS. Furthermore a low-energy-He+-implanted silicon wafer was examined, showing that He+ implantation not only leads to an accumulation of metals but also of oxygen in the R p and R p/2 range.

Acknowledgments

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 804.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.