13
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Controlling activity fluctuations in large, sparsely connected random networks

, &
Pages 63-81 | Received 25 Aug 1999, Published online: 09 Jul 2009
 

Abstract

Controlling activity in recurrent neural network models of brain regions is essential both to enable effective learning and to reproduce the low activities that exist in some cortical regions such as hippocampal region CA3. Previous studies of sparse, random, recurrent networks constructed with McCulloch–Pitts neurons used probabilistic arguments to set the parameters that control activity. Here, we extend this work by adding an additional, biologically appropriate, parameter to control the magnitude and stability of activity oscillations. The new constant can be considered to be the rest conductance in a shunting model or the threshold when subtractive inhibition is used. This new parameter is critical for large networks run at low activity levels. Importantly, extreme activity fluctuations that act to turn large networks totally on or totally off can now be avoided. We also show how the size of external input activity interacts with this parameter to affect network activity. Then the model based on fixed weights is extended to estimate activities in networks with distributed weights. Because the theory provides accurate control of activity fluctuations, the approach can be used to design a predictable amount of pseudorandomness into deterministic networks. Such nonminimal fluctuations improve learning in simulations trained on the transitive inference problem.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.