21
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A reformulation of the one-dimensional surface field integral equations

&
Pages 343-354 | Received 18 Sep 1992, Published online: 19 Aug 2006
 

Abstract

By starting from the matrix forms of the two coupled, inhomogeneous integral equations for the values of the magnetic field and its normal derivative on a one-dimensional, rough metal surface, or for the values of the electric field and its normal derivative on such a surface, we have obtained an equivalent pair of equations for these quantities in which the inhomogeneous terms are just the Kirchhoff approximations to them. The new pair of equations for the surface values of the magnetic field and its normal derivative is solved iteratively to generate a multiple-scattering expansion for the scattering amplitude when p-polarized light is scattered from a large RMS height, large RMS slope, one-dimensional, random silver surface, with the plane of incidence perpendicular to the generators of the surface. It is shown that the Kirchhoff approximation to the contribution to the mean differential reflection coefficient from the incoherent component of the scattered light displays no evidence of enhanced backscattering. However, the pure double-scattering contribution already displays this effect, stamping it as a multiple-scattering phenomenon.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.