35
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Complex dynamics generated by a sharp interface model of self-propagating high-temperature synthesis

, &
Pages 479-496 | Received 20 Jan 1998, Published online: 19 Aug 2006
 

Abstract

This paper presents results of a numerical study of a free-interface problem modelling self-propagating high-temperature synthesis (solid combustion) in a one-dimensional infinite medium. Evolution of the free interface exhibits a remarkable range of dynamical scenarios such as finite and infinite sequences of period doubling; the latter leading to chaotic oscillations, reverse sequences and infinite period bifurcation that may replace the supercritical Hopf bifurcation for some interface kinetics.

Solutions were verified by using different numerical methods, including reduction to an integral equation for which convergence to the solutions has been demonstrated rigorously. Therefore, the ability of the free-interface model to generate the dynamical scenarios observed previously in models with a distributed reaction rate should be regarded as firmly established.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.