45
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear dynamic characteristics of flame stripes formed in strained diffusion flames by diffusional—thermal instability

&
Pages 29-46 | Published online: 08 Nov 2010
 

The nonlinear dynamics of striped diffusion flames, formed in the two-dimensional counterflow field by the diffusional-thermal instability with Lewis numbers sufficiently less than unity, is investigated numerically by examining the nonlinear two-dimensional transient flame-structure solutions bifurcating from the one-dimensional steady solution by various initial perturbations. The Lewis numbers for the fuel and oxidizer are assumed to be identical and an overall single-step Arrhenius-type chemical reaction rate is employed as the chemistry model. Attention is focused on two nonlinear phenomena, namely the development of the two-dimensional flame-stripe structure and the extension of the flammability limit beyond the static extinction condition of a one-dimensional flame. A time-dependent solution, carried out for a Damköhler number slightly above the static extinction Damköhler number, exhibited the developmental procedure of flame stripes with the most unstable wavelength from a long-wave initial perturbation with a small amplitude. In contrast to the chaotic cellular premixed-flame structures predicted from numerical integration of the Kuramoto-Sivashinsky equation, the stripe structure in diffusion flames is found to be stationary, consequently leading to the conclusion that the nonlinear term in the corresponding nonlinear bifurcation equation would be a simple cubic term. Two-dimensional flame-stripe solutions are also found to be able to survive Damköhler numbers significantly below the static extinction Damköhler number of the one-dimensional flame structure. Extension of the flammability is found to be greatest if the imposed initial perturbation possesses the wavenumber of the fastest growing mode.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.