418
Views
97
CrossRef citations to date
0
Altmetric
Original Articles

Experimental observations of flame acceleration and transition to detonation following shock-flame interaction

, &
Pages 573-594 | Received 25 Aug 2000, Published online: 15 May 2007
 

Abstract

Observations are presented from experiments where laminar flame bubbles were perturbed successively by incident and reflected shock waves. Significant flame acceleration was observed in many instances, with the flame closely coupled to the reflected shock wave. The coupled waves are interpreted using a generalized Hugoniot analysis. As the incident shock velocity increased, detonation emerged near the highly convolved reaction zone. Prior to detonation the external visual attributes of the combustion fronts appear identical to turbulent combustion. However, they cannot be due to classical isotropic turbulence. The overall conclusion is that the observed enhancement of combustion is driven by chemi-acoustic interactions and related gas-dynamic effects. An analysis of the prevailing thermodynamic states suggests that thermal auto-ignition chemistry could also play a significant role prior to the onset of detonation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.