98
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Cell formation in non-premixed, axisymmetric jet flames near extinction

, &
Pages 635-644 | Received 20 May 2003, Published online: 29 Jul 2009
 

Abstract

Systematic experiments with CO2 diluted H2–O2 circular jet diffusion flames have been undertaken to study the formation of cellular flames, which occur for relatively low reactant Lewis numbers and near the extinction limit. The jet Reynolds number for all experiments was about 500, based on the centreline velocity, jet diameter and ambient fuel properties. The Lewis numbers, based on the initial mixture strength φ and ambient conditions of the investigated near-extinction mixtures, vary in the range 1.1–1.3 for oxygen and 0.25–0.29 for hydrogen (φ is defined here as the fuel-to-oxygen molar ratio normalized by the stoichiometric value). Various conditions near the extinction limit were investigated by fixing the fuel composition (H2–CO2 mixture), and systematically lowering the oxygen concentration in the co-flowing oxidizer stream past the point where cellular structures formed, until extinction occurred. The observed different instability states were correlated with the initial mixture strength and the proximity to the extinction limit.

The parameter space for cellularity was found to increase with decreasing initial mixture strength. For a given initial mixture strength, several cellular states were found to co-exist near the extinction limit, and the preferred number of cells (the azimuthal wave number) was observed to decrease with decreasing oxygen concentration (Damköhler number). These trends are consistent with previous theoretical work and our own stability analysis that will be reported elsewhere.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.