957
Views
117
CrossRef citations to date
0
Altmetric
Environmental Sciences

The Influence of Complex Systems Interactions on Barrier Island Dune Vegetation Pattern and Process

&
Pages 13-29 | Published online: 29 Feb 2008
 

Abstract

Studies of dune vegetation patterns have emphasized two structuring agents: local environmental gradients that shape the prominent zonation of coastal plant species, and disturbance patches initiated by overwash during coastal storms. For dune systems of two barrier islands in the Georgia Bight, we investigate how the interplay of these two conceptual frames generate patterns in (1) longitudinal (along-shore) and transverse (across-shore) compositional variability and (2) the arrangement of species along transverse gradients. We describe how this interplay constitutes a complex biogeomorphic system in which disturbance and recovery along gradients reinforce one another in positive feedback. Topographic and cover data were sampled within strip transects aligned perpendicular to the shoreline at study sites along a frequently storm-overwashed microtidal (South Core Banks, North Carolina) and an infrequently overwashed mesotidal (Sapelo Island, Georgia) barrier island. Multiresponse permutation procedures revealed that Sapelo has significantly greater transect-level longitudinal and transverse compositional variability. Nonmetric multidimensional scaling indicated that a single dominant transverse species gradient characterizes South Core, versus two spatially intersecting vegetation gradients for Sapelo. On South Core, reduced relief promoted by plant species of horizontally extensive growth forms reinforces the spread of overwash events across the landscape, thus overlaying disturbance and recovery gradients. Species-mediated dune topographic roughness on Sapelo buffers the dune vegetation from potential stand-wide disturbances, thereby juxtaposing disturbance and recovery gradients to a greater extent. We discuss the benefit of incorporating a complex adaptive-systems framework into the reductionist methodologies invoked in field-based biogeographical studies.

Acknowledgments

The staff at Cape Lookout National Seashore, the University of Georgia Marine Institute on Sapelo Island, and the Harker's Island Fishing Center and Marina provided generous logistical support. Scott Kissman and John Rodgers were invaluable in the field and in the lab. This study was funded by a NSF Geography and Regional Science Doctoral Dissertation Research Grant (no. 9811349).

Notes

Note: All correlations are significant at p<0.05. Elevation and distance measured in meters relative to high water mark.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 312.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.