65
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Improving local estimations and regional trends of glacier equilibrium line altitudes

&
Pages 67-79 | Published online: 15 Nov 2016
 

Abstract

Abstract Small glaciers have short response times to climate change and therefore offer a powerful means of climate monitoring. Glacier responses to climate, or their mass change, may be suggested by a change in the Equilibrium Line Altitude (ELA). However, regional climatic reconstructions have repeatedly neglected the importance of local variations in ELAs in preference for regional trends. For small glaciers close to the glaciation level, ignoring the importance of local topographic components in mass balance estimates may lead to erroneous climatic reconstructions. Of 510 small valley and cirque glaciers digitised across northern Scandinavia, 284 were objectively deemed suitable for inferring an ELA. The inferred ELA was derived from the median elevation and several local topographic variables using regression analysis. The glacier elevation, area, slope and aspect parameters were found to be the best predictors of the local ELA. ELA estimations improved from 77% up to 94% accuracy when topographic parameters for every grid‐cell within rasters representing glacier surfaces were computed rather than using subjective measurements from topographic maps. Regional ELA trend surfaces, interpolated between the local ELA values, differed in effectively representing the local variability, depending upon the distribution and accuracy of the local ELA values. A second‐order polynomial trend surface most accurately represented ELA variations across the study area, within the initial local measurement accuracy of ±100 m. It is concluded that current subjective topographic map‐based analyses are unlikely to be sufficiently accurate for predicting the regional ELA of small, sensitive and marginal glaciers, unless CIS‐based spatial analyses are made at a reasonable resolution.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.