44
Views
31
CrossRef citations to date
0
Altmetric
Article

Receptor Type Protein Tyrosine Phosphatase ζ-Pleiotrophin Signaling Controls Endocytic Trafficking of DNER That Regulates Neuritogenesis

, , , &
Pages 4494-4506 | Received 15 Jan 2008, Accepted 06 May 2008, Published online: 27 Mar 2023
 

Abstract

Protein tyrosine phosphatase ζ (PTPζ) is a receptor type protein tyrosine phosphatase that uses pleiotrophin as a ligand. Pleiotrophin inactivates the phosphatase activity of PTPζ, resulting in the increase of tyrosine phosphorylation levels of its substrates. We studied the functional interaction between PTPζ and DNER, a Notch-related transmembrane protein highly expressed in cerebellar Purkinje cells. PTPζ and DNER displayed patchy colocalization in the dendrites of Purkinje cells, and immunoprecipitation experiments indicated that these proteins formed complexes. Several tyrosine residues in and adjacent to the tyrosine-based and the second C-terminal sorting motifs of DNER were phosphorylated and were dephosphorylated by PTPζ, and phosphorylation of these tyrosine residues resulted in the accumulation of DNER on the plasma membrane. DNER mutants lacking sorting motifs accumulated on the plasma membrane of Purkinje cells and Neuro-2A cells and induced their process extension. While normal DNER was actively endocytosed and inhibited the retinoic-acid-induced neurite outgrowth of Neuro-2A cells, pleiotrophin stimulation increased the tyrosine phosphorylation level of DNER and suppressed the endocytosis of this protein, which led to the reversal of this inhibition, thus allowing neurite extension. These observations suggest that pleiotrophin-PTPζ signaling controls subcellular localization of DNER and thereby regulates neuritogenesis.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mcb.asm.org/ .

ACKNOWLEDGMENTS

We thank Masumi Ichikawa and Kyoko Ajiki for technical assistance and helpful suggestions for immunoelectron microscopic analysis. We also thank Masaharu Noda for allowing us to continue the study of PTPζ.

This work was supported by grants from the Ministry of Education, Science, Sports and Culture of Japan and from the Naito Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.