151
Views
231
CrossRef citations to date
0
Altmetric
Article

ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair

, , , , , , , & show all
Pages 5082-5092 | Received 21 Feb 2008, Accepted 29 May 2008, Published online: 27 Mar 2023
 

Abstract

ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and γH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1−/−Ku86−/− fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3′ overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mcb.asm.org/ .

ACKNOWLEDGMENTS

This work was supported by the University of Pittsburgh Cancer Institute, NCI and NIA CA103730 and CA111525, the Pennsylvania Department of Health, and The Ellison Medical Foundation (AG-NS-0303). J.H.J.H. is supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NOW), Cancer Genomics Center, the Association for International Cancer Research, and the European Commission (IP 512113), RISC-RAD contract F16R-CT-2003-508842.

We thank Richard D. Wood for careful reading of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.