27
Views
12
CrossRef citations to date
0
Altmetric
Article

Understanding the Molecular Basis of the Interaction between NDPK-A and AMPK α1

, , , , , & show all
Pages 5921-5931 | Received 21 Feb 2006, Accepted 26 Apr 2006, Published online: 27 Mar 2023
 

Abstract

Nucleoside diphosphate kinase (NDPK) (nm23/awd) belongs to a multifunctional family of highly conserved proteins (∼16 to 20 kDa) including two well-characterized isoforms (NDPK-A and -B). NDPK catalyzes the conversion of nucleoside diphosphates to nucleoside triphosphates, regulates a diverse array of cellular events, and can act as a protein histidine kinase. AMP-activated protein kinase (AMPK) is a heterotrimeric protein complex that responds to the cellular energy status by switching off ATP-consuming pathways and switching on ATP-generating pathways when ATP is limiting. AMPK was first discovered as an activity that inhibited preparations of acetyl coenzyme A carboxylase 1 (ACC1), a regulator of cellular fatty acid synthesis. We recently reported that NDPK-A (but not NDPK-B) selectively regulates the α1 isoform of AMPK independently of the AMP concentration such that the manipulation of NDPK-A nucleotide trans-phosphorylation activity to generate ATP enhanced the activity of AMPK. This regulation occurred irrespective of the surrounding ATP concentration, suggesting that “substrate channeling” was occurring with the shielding of NDPK-generated ATP from the surrounding medium. We speculated that AMPK α1 phosphorylated NDPK-A during their interaction, and here, we identify two residues on NDPK-A targeted by AMPK α1 in vivo. We find that NDPK-A S122 and S144 are phosphorylated by AMPK α1 and that the phosphorylation status of S122, but not S144, determines whether substrate channeling can occur. We report the cellular effects of the S122 mutation on ACC1 phosphorylation and demonstrate that the presence of E124 (absent in NDPK-B) is necessary and sufficient to permit both AMPK α1 binding and substrate channeling.

View retraction statement:
Understanding the Molecular Basis of the Interaction between NDPK-A and AMPK α1

We are grateful to Grahame Hardie, David Carling, Angela Woods, and Marie-Lise Lacombe for constructs, antibodies, and reagents.

We thank the Wellcome Trust (075237/Z/04/Z) and the Cystic Fibrosis Trust (PJ439) for their support. Local university support was provided for K.J.T.

There are no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.